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* Power grids in the network science literature

* How are power grid structured?

* Comparing abstract topological models of grid
failure with a cascading failure model

* How do power grids behave?

* Critical slowing down as an indicator of risk???
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Question 1: Network Structure

How are power grids structured, and
how is this structure similar to or
different from other networks?

Small World? SaIe Free? Random?
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Why should we care?

Small-world networks  Scale-free networks Random graphs
High clustering, but Heterogeneous Homogeneous
small diameters. connectivity (hubs). connectivity.
Tend to synchronize Vulnerable to attacks Not particularly
easily (6 degrees of at the hubs, robust to vulnerable to attacks
separation) random failure or random failure
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Existing studies of power grid structure

Watts and Strogatz Western US Power grids are small-
(1998) world
Amaral et al. (2000) Southern California Exponential degree
Albert et al. (2004) North America Exponential degree,
scale-free behavior
Crucitti et al. (2004) Italy Power-law degree
Chassin and Possee US East and West Power-law degree
(2005)
Holmgren et al. (2006) Nordic, Western US Power grids fail in ways
similar to scale-free nets
Blumsack et al. (2007) IEEE 118 Wheatstone motifs
Wang, et al. (2008) Various Synthetic power grids
Bompard et al. (2009) ltaly “Net-ability”
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Degree distribution results
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Topology metrics results

Clustering & Avg. path lenghts &« Assortativity
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Therefore... ???

* Since the power network is not scale-free,

* perhaps we don’t really need to worry too much
about directed attacks.

* Since the power network is not small-world

* perhaps we don’t really need to worry too much
about bad things spreading quickly.
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However

* Power flows in power grids by
Kirchhoff’'s and Ohm’s laws,

not by topology.

 Small failures can cascade to
become large failures

* What models provide useful
insights about resilience?
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Question: What models provide usetul

information about erid vulnerability?

Ehe New Yok Times

Asia Pacific
“* Academic Paper in China Sets Off Alarms in U.S.
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Wang & Rong, Safety Science, 2009

Fig. 2. The scheme illustrates the load redistribution triggered by an node-based
attack. Node i is removed and the load on it is redistributed to the neighboring
nodes connecting to node i. Among these neighboring nodes, the one with the
higher load will receive the higher shared load from the broken node.
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Conclusion

Power grids are
particularly
vulnerable to
attacks at low-load
(traffic) nodes
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But cascades in power grids are

different...

Safety
science
model

Source

Node
fails

By Kirchhoff’s
laws
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An Experiment: lest the resistance of the Eastern

Interconnect to random failure/directed attack

* Five (bus) attack/failure * Three measures of
vectors: Impact:
* Random failure * “Characteristic Path
- Degree attack Length” after the

- Min “traffic” attack disturbance

* Max “traffic” attack
* “Betweenness” attack

* “Connectivity Loss” after
the disturbance

* Blackout size from a model
of cascading overloads
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Measures of Impact

Characteristic Path Length Albert et al. (2001): L increases

rapidly with directed attacks in
scale-free graphs, but not in
random graphs

~

- Connectivity Loss

failure model

i @
Blackout size from a cascading KQ.?O

& v /
Albert et al. (2004): C, increases

rapidly as hub nodes are
removed from a power grid
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Blackout model

P, =R(S:) = Vil Y (g:51V;| cos(6: — ;) + bi;|V;| sin(6; - 6))

* Use DC power P
flow Q= 3(5) = [V Y (gslV3 im0, — 05) — bs V5 cos (8~ 6,))
* Relays i

* Trip time based on the integral
of the overload
* After separation into subgrids: n

* Generators can ramp up/down P=) (0; - 6;)/ X;
<10% to rebalance supply and
demand in islands

* When there is still too much
supply, trip smallest generator

* When there is still too much
demand, shed load
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Attack/Failure Vectors

Random failure / N\
)

Degree-based attack

Betweenness
attack

(& )

Albert et al (2000) Albert et al (2004)

Min/max

load/traffic
Wang & Rong (2009):

Min-traffic leads
to large failures
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* 40 control areas from the Eastern Interconnect
(2012 planning case)

* 336-1473 buses < P
o 29,261 of 49,907 \\\ ///\d
buses total | S NEESN .7 (A
Mro| 4 -.
* Study each S
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Critical Path Length (L)
(deviation from random)

Results: Critical Path Length

High betweenness attacks are the most “successfu
Min-traffic is least. Directed attacks ~2 sigma
arger than random

|II

Standard deviation
for random failure

®-Degree-Based Random Failure Statistics: o A
- Max-Load p=0.072 ) A

[+ Min-Load =080 P
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Results: Gonnectivity Loss

III

Degree-based attacks are much more “successfu
Min-traffic is least. Directed attacks ~3 sigma
larger than random

40
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Blackout size

Results: Blackout Size

Max-traffic attacks are most “successfu

I”

Min-traffic is least. Big blackouts result from
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Blackout size vs. Connectivity lL.oss
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Implications

* The low-traffic nodes are not the most
vulnerable.

Some topological models are grossly misleading

* All of the topological models tested suggest that
directed attacks are notably more successful than
random ones

But different models provide different implications.
Topological methods appear to be useful only for
identifying general trends

* Protecting high-traffic nodes (transformers)
seems like a good idea
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Critical slowing down

as an indicator of elevated risk?

Paul Hines;"Ph.D. \ University of Verment
Eduardo Cotilla-Sanchez University of Vermont
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Measuring risk in real time

 We need methods to detect problems as they
emerge: even the ones that we cannot imagine

Real-time
blackout risk
meter [
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Alternatives for dynamic

stability assessment
* Use traditional stability methods.
* Eigenvalue analysis, Lyapunov methods.

 Effective when the state of the system is know well and
system size is manageable

* PMU’s. PMU data can be used to measure the
state more accurately.

* But, is it possible to see indicators of risk, directly in
the raw time-series data?
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Context

Vol 4613 September 20035 dol:10.7038/ nature 08227 namre

REVIEWS

Early-warning signals for critical transitions

Marten Scheffer’, Jordi Bascompte®, William A. Brock”, Victor Brovkin®, Stephen R. Carpenter”, Vasilis Dakos’,
Hermann Held”, Egbert H. van Nes', Max Rietkerk & George Sugihara®

Complex dynamical systems, ranging from ecosystems to financial markets and the climate, can have tipping peints at which
a sudden shift to a contrasting dynamical regime may occur. Although predicting such critical points before they are reached
is extremely difficult, work in different scientific fields is now suggesting the existence of generic early-warning signals that
may indicate for a wide class of systems if a critical threshold is approaching.

As systems approach “collapse” they shows signs
of critical slowing down.
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]1-machine, infinite bus model

P,(8(t)) = R(Vi(I®)") = R(EpeI")

(Eeis — Vy)* Infinite bus,
Z3, :

B2 — BV s but noisy voltage
Z1y

E;e’I" = Ep

Pou(£) = P.(8(2)) + Duw(?) + Ma(2)
A
Pmax —
Xi12 + X,
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"Two-bus results

V1 and V2
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What about the WSCC on

* Lines sagged into trees, triggering a cascading
failure

* 7.5 million customers lost power. 7 states +
Canada.
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Autocorrelation
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Conclusions

* Changes in autocorrelations and cross
correlations in PMU data could indicate proximity
to critical points.

 Additional research is needed to determine the
utility of this approach (false positives, false
negatives, etc.)

* Theoretical work on small models?
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~ Electric Vehicles and the Gnid

Paul Hines;"Ph.D. \ University of Verment
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Electric vehicles

* What happens when we mix
electric vehicles and cap-and-
trade systems?

* Create an optimization model
to minimize hourly dispatch

cost over a year subject to
CO2 cap
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CO2 allowance costs

12
¥ Evening Charging
10 Delayed Charging
Twice a Day Charging
8
S
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=
“ 4
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0
No PHEVs Low Medium High

PHEYV Fleet Penetration Level

Forthcoming: J. Dowds et al., Transportation Research Record, 2010



With power plant construction
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EnergyMinder
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Visual Feedback for Energy FdAf.

 Commercial growth ——
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Academaic studies

Dormitory residents reduce
electricity consumption when
exposed to real-time visual

feedback and incentives

John E. Petersen, Vladislav Shunturov, Kathryn Janda,
Gavin Platt and Kate Weinberger
Oberilin College, Lewis Center for Environmental Studies, Oberlin, Ohio, USA

Used a combination of natural social networks, competition and web-based
visuals to incent energy efficiency
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T'he value of social pressure

Utilities Turn Their Customers Green, With Envy
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Online Social Networking

Facebook helps you connect and share with
the people in your life.
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Research question

* Can we design a voluntary social network that
allows people to understand their energy
consumption better, without top-down
organization?

Hines, VLS, 5/28/09
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Top-down vs. bottom-up modeling

WIKIPFDIA

The Free Encyclopedia
Top down (Microsoft Hohm) Bottom up (EnergyMinder)
Participants provide data. Users ask questions of one
Microsoft builds an efficiency another. A (regression)
model and tells users about model “emerges,” and is
their efficiency, how to be presented to participants.

more efficient.
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E-Minder

Welcome to EnergyMinder

Things to do:

Enter Bills for July 09 to September 09
No Questions need to be answered

See how you are doing

Ask a Question

Change Account Settings
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Results from preliminary trial (N~30)

* Users interested to ask/answer questions.
* Very little interest in retrieving billing data

* Next trial will link to AMI

The significant factors are as follows:

Factor Number Description

1 Number of adults living in the house
2 Own an electric dryer

3 Own an electric water heater

Hines, 14-Sep-2010
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